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Abstract—In this work we explore the differences between deep
classification networks which have been trained either with or
without supervision. We use the discriminator of a generative
adversarial model as the unsupervised classification network.
These discriminator networks have previously been shown to
perform very well on extracting features for the classification task
even though they have not been given supervision in the form of
class labels during training. We compare one such unsupervised
discriminator network against a classification network trained
under supervision with class labels. For this experiment, we
trained both of these networks, analyzed the features learnt by
them, and presented the results of our comparative studies in
a systematic way to demonstrated the differences in the learnt
representations of the two networks.

I. INTRODUCTION

Generative adversarial networks (GAN) [1] are being used
in several domains in computer vision. GANs consist of two
networks: one for generating an image from random noise
and the other for discriminating between a natural image and
an artificial image generated by the generator network. These
two networks are trained simultaneously in an adversarial
manner where the objective of the discriminative network
is to correctly identify natural and artificial images, and the
objective of the generator is to prevent the discriminator from
doing so. This forces the generator network to learns how to
generate natural-like images, while the discriminator learns to
differentiate more precisely between the natural and generated
images.

The networks trained in this adversarial manner have been
shown to have very nice properties and are being used for
various applications such as scene understanding [2], semantic
segmentation [3], and conditional image generation [4], [5],
[6] etc. Recently, in [7], the authors trained a GAN model on
the Imagenet dataset [8] and observed that the representations
learnt by the discriminator network can be used to train
image classifiers which perform well on the CIFAR-10 dataset
[9]. This is despite of any class information given to the
discriminator network during training. The authors claimed
competitive performance of their network with other unsu-
pervised methods for classification. Clearly, the discriminator
network is able to learn some features which are useful not
only for discriminating natural and artificial images, but also
for classifying images into multiple categories. Given the

Fig. 1. Sample images from the dog (Top), horse (middle) and the ship
(bottom) classes from the CIFAR-10 dataset.

completely different objective of the GAN network, this result
if very surprising.

In this work, we analyze the differences between the rep-
resentations learnt by such GANs and a network trained with
supervision of ground truth labels. For comparison, we train
a classification network for CIFAR-10 dataset. This network
has the same architecture as the discriminator network from
[7]. We compare the features learnt by our network with the
features learnt by the discriminator network from [7].

The report is organized as follows. In section II we briefly
describe the most relevant previous works on this topic. We
explain our experiments in detail and present the results in
sections III and IV, respectively. Finally, our observations and
key insights are described in section V.

II. RELATED WORK

In this section we will first discuss generative adversarial
networks [1] and then move on to DCGAN [7].

GANs estimate generative models via an adversarial pro-
cess, in which two models are trained simultaneously: (a) a
generative model (G) that models the data distribution, and (b)
a discriminative model (D) that estimates the probability of a
given image being natural (i.e. came from the training data)
than from G. Adversarial training means that the objective
of G is to maximise the probability of D making a mistake.



Fig. 2. The network architecture for both the disciminator network and the classification network. We train the discriminator network for classification by
keeping all the convolution layers fixed and training only the fully connected layers. For training the classification network we use the same architecture but
train the whole network end-to-end.

On the other hand, the objective of D is to maximise the
probability of assigning the correct labels to both natural train-
ing examples and generated samples from G. This framework
can be thought of as a two-player minimax game. An unique
solution to this problem exists, which, for G, is to perfectly
recover the underlying distribution of the training data and,
for D, is to output a probability of 0.5 for both natural and
generated images. The authors of [1] approximate both these
models as multilayer neural networks and trained the whole
system using back-propagation.

Our work mainly follows from [7]. In that paper, the authors
propose and evaluate some constraints on the architecture
of GANs which make them stable to train. They call this
class of architectures Deep Convolutional GANs (DCGAN).
They observed that the deep convolutional adversarial pair
learns a hierarchy of representations from object parts to
scenes in both the generator and discriminator. The authors
also observed that the trained discriminator networks can
be used for image classification tasks showing competitive
performance with other unsupervised algorithms. Also, these
representations could be used for novel tasks like vector
arithmetic on face samples. Some of the constraints introduced
in [7] are: (a) using strided convolutions instead of pooling
layers; (b) using batch normalisation [10] in both generator
and discriminator; (c) using LeakyReLU activation [11], [12]
in the discriminator for all layers except the last Sigmoid layer
etc. Using strided convolutions instead of pooling layers allows
the network to learn its own spatial down-sampling rather than
specifying a fixed one. Batch normalisation stabilises training
by normalising the input to each layer. This helps gradient
flow in deeper models. Our classification network uses the
same network architecture used by the discriminator network
in [7] which was trained on the LSUN bedrooms dataset.

The CIFAR-10 datasset [9], that is being used here for
evaluation, is a collection of 32 × 32 colour images of 10
categories - airplane, automobile, bird, cat, deer, dog, frog,
horse, ship and truck. It has 50, 000 images for training and
10, 000 images in the test set. Figure 1 shows some sample
images for three categories from the dataset. Before passing

the images through the networks, the images were resized to
64× 64.

In the following sections we discuss our methodology and
observations.

III. PROBLEM FORMULATION AND SETUP

Our primary goal in this work is to compare the discrimina-
tor network from DCGAN trained in an unsupervised manner
with a supervised network of the same architecture in terms
of the features learned by the two networks.

A. Unsupervised Training of the Discriminator Network (DN)

The authors of [7] were kind enough to make their code
available publicly. They also provide the network models of
the generator. However, we wanted to compare their discrimi-
nator network against a network trained with supervision. So,
we had to train the adversarial model ourselves. We used the
codes provided by the authors to train an adversarial generative
and discriminative networks on Imagenet [8]. Note that the
generator network outputs a 64×64 image. So the input to the
discriminator network is a 64×64 image. To use the CIFAR-10
images, we up-sample them to this size. (We use the same size
for our classification network too.) We trained the networks
till convergence (25 epochs). This took almost one week on
two Titan X GPUs . All the results in the report are based
on the discriminator network obtained at the end of the 25th

epoch in our experiments.
Figure 2 shows the architecture of the discriminator network

(from [7]) that was used for training the GAN.

B. Supervised Training of the Classification Network (CN)

Because there is a tanh non-linearity at the output of
the generator network in [7], we normalise the images such
that each channel of the image lies in [−1, 1]. We use the
architecture shown in 2. We max-pool the features from each
convolutional layer to a spatial dimension of 4×4 and concate-
nate the resulting features. We reshape these features to get a
15, 360-D vector (64∗4∗4+128∗4∗4+256∗4∗4+512∗4∗4).
We add a fully connected layer (output size 64) on top of



Fig. 3. Sorted energies dog. Both networks correctly classified the input
image of dog (fig. 1, top row, first image from the left).

this vector. Another fully connected layer on top of this with
Softmax gives us the probabilities of the 10 classes. We
use batch-normalisation [10] and dropout [13] in this layer.
We train this network on the training set of CIFAR-10. The
network is trained for 200 epochs achieving a training accuracy
of 98.63% and an accuracy of 80.87% on the test set.

C. Using the Discriminator Network for classification

We use the discriminator network trained using adversarial
approach to extract the 15, 360-D features (in a similar manner
as for the classification network) for the CIFAR-10 training
set. We use these features to train a multi-layer perceptron
for classification consisting of a 64-D fully connected layer
with ReLU activation and an output layer with Softmax (see
figure 2). The architecture of this top MLP block is exactly the
same as the top portion (starting from the fully connected layer
towards the softmax) of the supervised classification network.
When tested on the CIFAR-10 test set, this approach gives an
accuracy of 75.19%. From now on, we refer to the combined
discriminator network and the added mlp as DN.

Notably, both the networks achieve comparable perfor-
mance. This is really interesting since the convolutional layers
of the discriminator network was not trained using any class
information. Yet, it still learnt discriminating features that are
suitable for classification.

IV. RESULTS

In this section, we compare the filters and filter responses
of the two networks and try to gain some insight into the
similarities and differences between the two.

A. Comparing the energies of activations

We calculate the energy of each activation in each layer,
and sort these energies in decreasing order of magnitude. We
analyse the energy profiles for the following four cases:

1) Correctly classified by both: Figure 3 shows the energy
profiles for an image of a dog for both networks and figure
4 shows the profiles for an image of a horse. Both of these
networks correctly classified the images.

2) Correctly classified by DN but incorrectly by CN: Figure
5 shows the energy profiles for an image of a dog for both
networks and figure 6 shows the profiles for an image of a
horse. The DN correctly classified the images but CN did not.

Fig. 4. Sorted energies horse. Both CN and DN correctly classified the input
image of horse (fig. 1, middle row, first image from the left).

Fig. 5. Sorted energies dog. DN correctly classified the the input image of
dog (fig. 1, top row, sixth image from the left) which CN misclassified as
truck.

3) Correctly classified by CN but incorrectly by DN: Figure
7 shows the energy profiles for an image of a dog for both
networks. Figure 8 shows the profiles for another image of a
dog. These images were correctly classified by the CN but the
DN did not classify these correctly.

4) Incorrectly classified by both: Figures 9 and 10 show
the energy profiles for two different images of dogs for both
networks. None of these networks correctly classified the
images.

Note that for all cases, the total energy (area under the
energy curve) and the maximum energy increase as we move
up the layers for DN but decrease for CN. For each case
(figures 3 - 10), CN has more energy in the first layer than DN.
Both networks have similar energy in layer 2, and then DN
takes over and has much higher energy in layers 3 and 4 than
the corresponding layers in CN. This can also be seen from
the visualisations of filter activations (figures 11 - 22) where
we see that the activation magnitudes in the higher layers of
CN are very low compared to activations of the corresponding
layers in DN.

B. Cosine distance between the 64-D feature vectors

For studying the structure of the 64-D space where the
features lie, we calculated the cosine distances between in-
class and inter-class pairs of features for both networks. Table
I lists the average in-class and inter-class distances for a few
classes and class-pairs for the two networks.

A very interesting thing to note here is the magnitudes
of distances for the two networks. The CN seems to project



Fig. 6. Sorted energies horse. DN correctly classified the the input image of
horse (fig. 1, middle row, fifth image from the left) which CN misclassified
as cat.

Fig. 7. Sorted energies dog. CN correctly classified the the input image of
dog (fig. 1, top row, second image from the left) which DN misclassified as
deer.

everything very close to each other. Though, there is still a
difference for within-class and between-class distances. The
DN projections are quite spread out. And the inter-class
distances are much higher than within-class distances too. This
is interesting because ideally you would assume that the DN
projects all natural images to the same part of the space and
the CN projects different classes to different parts. However, it
seems that in practice the opposite is true. Note that the ratio of
distances for different classes and same classes is higher for
CN, which explains the reason for its superior performance
over DN.

C. Visual comparison of activations at different layers

We visualize the neuron activation outcomes of the two
networks at the four convolutional layers for different images.
Since the number of neurons are large, we sort the neurons
based on activation energy at the output in descending order
and plot the heat map for the top 16 most active neurons for
any input image in a 4 × 4 layout. In those plots, the top

TABLE I
AVERAGE COSINE DISTANCES BETWEEN CLASSES OVER 50 PAIRS

Class-pair Avg. Cosine distance Avg. Cosine distance
for DN for CN

Dog-Dog 0.7119 0.0015
Horse-Horse 0.6993 0.0020

Ship-Ship 0.5853 0.0026
Dog-Horse 0.7424 0.0023
Dog-Ship 1.2079 0.0076

Horse-Ship 1.1692 0.0068

Fig. 8. Sorted energies horse. CN correctly classified the input image of dog
(fig. 1, top row, third image from the left) which DN misclassified as horse.

Fig. 9. Sorted energies dog. Both of these networks incorrectly classified the
input image of dog (fig. 1, top row, fourth image from the left) as deer.

left subplot corresponds to the highest activation energy and
the bottom right corresponds to the lowest activation energy
among the 16 neurons, if otherwise not specified.

1) Correctly classified by both networks: First let’s com-
pare the activations of the networks for the case when both
were able to correctly classify the image. Figure 11 shows the
network activations for both networks for an image of a dog
(fig. 1, top row, first image from the left) and figure 12 shows
the activations for an image of a horse ((fig. 1, middle row,
first image from the left).

In figure 11, let us compare the highest energy activations
for DN and CN for the lowest layer. A close examination
reveal several pairs of neurons between DN and CN network
that have similar activations, such as, 4 and 25, 62 and 41 and
14 and 27. This observation can easily be verified by figure
12. For this image, finding neuron 4, 62 and 14 among the
most active neurons of layer-1 automatically led us to assume
that neuron 25, 41 and 27 will be present in the list of most
active neurons of layer-1 of CN, which they are. This shows
that the DN learns something at least partially similar to what
the CN learns in CNN layer-1, although they were trained
for different objectives. We know for classification networks,
the first CNN layer usually reveals edge information. Hence,
we can assume that DN also tries to extract edge information
from the input image. Now, as we move towards higher CNN
layer activations, the output images gradually becomes more
abstract and finding similar activations for the CN and DN
architectures become very difficult. For CNN layer-2 of 11,
38-94 and 107-77 pairs seem to match, and they are found in
figure 12 for the horse image as well. Just by looking at the
patterns, one might say that the two networks are learning



Fig. 10. Sorted energies horse. Both of these networks incorrectly classified
the input image of dog (fig. 1, top row, fifth image from the left). DN classified
it as cat and CN as bird.

something similar, especially at the lower layers.

We show other cases in the Appendix of the report.

V. DISCUSSION AND CONCLUSION

A notable point we would like to discuss is the reduction in
energy of the higher layers of the CN. We believe that this is
because the network was able to fit (over-fit, in fact (we will
come to that part in a bit)) the data without using the upper
layers and made everything in the upper layers very close to
zero. The first two layers contained most of the energy in the
network and the upper two convolution layers had little energy.

As we’ve mentioned earlier, both of these networks seem
to overfit the training data and therefore could not reach the
training accuracy on the test set. We attribute this phenomenon
to the very large feature dimension of 15,360 that was obtained
from the four convolutional layers. This feature is fed to
the first fully connected layer to obtain a 64 dimensional
feature vector. This fully connected layer has 15, 360 × 64
parameters which is a huge number. Though we added batch-
normalization [10] and drop-out [13] with probability 0.5
afterwards, those proved to be insufficient regularisation given
the very large number of trainable parameters. In [7], the
authors claimed to have achieved ≈ 82% accuracy with
the DN. However, the finer details of their methods are not
apparent from their paper. Given our goal of analyzing the
DN, it was not essential to achieve state-of-the-art performance
with the network and therefore, we refrained from fine-tuning
the hyper-parameters rigorously.

We compared the 16 most activated neurons for two dog
images (refer to figs. 11 and 15) and a horse image (refer
to fig. 12) for DN. Our analysis showed that the neurons in
different layers that are common in the top 16 of the two dog
images are as follows:

• CNN Layer 1: 14, 4, 6, 1, 62, 53, 58
• CNN Layer 2: 64, 66, 107, 33, 57
• CNN Layer 3: 72, 91, 95, 45
• CNN Layer 4: 495, 305, 34, 69, 476, 404, 382

And, the common neurons between the first dog image and
the horse image are:

• CNN Layer 1: 4, 6, 19, 23, 53, 58, 48, 56, 18, 32
• CNN Layer 2: 71, 64, 66, 107, 33, 17, 26, 114, 38, 36, 82

• CNN Layer 3: 72, 217, 203, 91, 95, 45, 92, 26
• CNN Layer 4: 354, 305, 114, 475, 229, 34, 69, 476, 382

It is very interesting to see that the horse image has more in
common in terms of the active neurons, although, the network
correctly classified all these images. The reason behind this
similarity for the DN networks is probably the fact that it was
trained with an objective to discriminate between natural and
generated images. Since, all these input images are natural,
they share much similarity in the representation by DN.
However, for the classification task, all the responses were
combined together and fed to the fc layers. When evaluated
together with an objective to discriminate between classes, the
fc layers does a fine job of finding separating hyperplanes. As
we have discussed before, similar to CN, the DN also shows
the tendency to learn hierarchical features, a combination
of all of them provides the fc layers ample opportunity to
find features that would separate different classes from each
other. This argument is backed by figs. 13 and 14 where we
show pairwise cosine distance between activation energies per
layer for DN and CN, respectively. It can be seen that it is
hard to discriminate between same class and different class
distances at any of the four convolutional layers, although, we
already reported that both networks are capable of discriminate
between the classes reasonably. Therefore, we we assume
that none of the two networks are specifically learning class
discriminating properties at the convolutional layers, rather
they learn to discriminate effectively at the fc layers.
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Fig. 11. Activations for each layer of the DN (top) and the CN (bottom). Both of these networks correctly classified the input image (fig. 1, top row, first
image from the left) as dog .

Fig. 12. Activations for each layer of the DN (top) and the CN (bottom). Both of these networks correctly classified the input image (fig. 1, middle row, first
image from the left) as horse.

Fig. 13. Pairwise cosine distance betweeen neuron activation enargies between
several similar and dissimilar class samples for DN.

Fig. 14. Pairwise cosine distance betweeen neuron activation enargies between
several similar and dissimilar class samples for CN.
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APPENDIX

A. Visual comparison of activations at different layers

We continue from section IV-C and show and discuss feature
visualisations for some more cases. We note that the features
learnt in the first layer are very similar to each other, with
some of the features looking exactly the same for DN and CN.
However, for the upper layers, the features are not similar.
Also, traditional neural networks learn hierarchical features,
but our CN does not seem to be doing that. We believe that
this is because our networks are not hierarchical. Traditional
feed-forward CNNs can be thought of as Markov chains where
information about one layer eliminates the need for knowledge
about lower layers. On the other hand, the CN in our case
feeds information from multiple layers to the classifier and
the training is not hierarchical.

1) Correctly classified by DN but incorrectly by CN: Next,
let’s compare the activations of the networks for the case when
DN was able to correctly classify the image, while CN failed.
Figure 11 shows the network activations for both networks for
an image of a dog (fig. 1, top row, sixth image from the left)
and figure 12 shows the activations for an image of a horse
((fig. 1, middle row, fifth image from the left).

2) Correctly classified by CN but incorrectly by DN: In this
part we compare the activations of the two networks for the
case when CN correctly classifies the images but DN does not.
Figure 17 shows the highest activations for an image of a dog
which was classified correctly as a dog by CN but incorrectly
as a deer by DN. Similarly, figure 18 shows the activations
for an image incorrectly classified by DN as a horse.

3) Incorrectly by both: Now we compare the activations
for the case when both the networks incorrectly classify the
image. Figure 19 shows the highest activations for an image of
a dog which was classified as a deer by both networks. Figure
20 shows the activations for an image of a horse classified as
a truck by both networks.

Figure 21 shows the activations for an image of a dog
classified as a cat by DN and as a bird by CN. Figure 22
shows the activations for an image of a horse classified as an
airplane by DN and as a deer by CN.



Fig. 15. Activations for each layer of the DN (top) and the CN (bottom). DN correctly classified the input image (fig. 1, top row, sixth image from the left)
as dog, while CN misclassified it as a truck.

Fig. 16. Activations for each layer of the DN (top) and the CN (bottom). DN correctly classified the input image (fig. 1, middle row, fifth image from the
left) as horse, while CN misclassified it as a cat.



Fig. 17. Activations for each layer of the DN (top) and the CN (bottom). CN correctly classified the input image (fig. 1, top row, second image from the
left) as dog, while DN misclassified it as deer.

Fig. 18. Activations for each layer of the DN (top) and the CN (bottom). CN correctly classified the input image (fig. 1, middle row, third image from the
left) as dog, while DN misclassified it as horse.



Fig. 19. Activations for each layer of the discriminator network (top) and the classification network (bottom). Both of these networks incorrectly classified
the input image of dog (fig. 1, top row, fourth image from the left) as deer.

Fig. 20. Activations for each layer of the discriminator network (top) and the classification network (bottom). Both of these networks incorrectly classified
the input image of horse(fig. 1, middle row, second image from the left) as truck.



Fig. 21. Activations for each layer of the discriminator network (top) and the classification network (bottom). The DN incorrectly classified the input image
of dog (fig. 1, top row, fifth image from the left) as cat, while CN misclassified it as bird.

Fig. 22. Activations for each layer of the discriminator network (top) and the classification network (bottom). The DN incorrectly classified the input image
of horse (fig. 1, middle row, third image from the left) as airplane, while CN misclassified it as deer.


