Detecting and Recognizing Humans, Objects, and their Interactions

Ankan Bansal

PhD Dissetation Defense

Committee: Prof. Rama Chellappa Prof. Ramani Duraiswami Prof. Behtash Babadi Prof. Abhinav Shrivastava Prof. David Jacobs

07 May, 2020

Detecting Objects and Interactions

- Zero-Shot Object Detection. Bansal, Sikka, Sharma, Chellappa, Divakaran. European Conference on Computer Vision (ECCV), 2018.
- Detecting Human-Object Interactions via Functional Generalization. Bansal, Rambhatla, Shrivastava, Chellappa. Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI), 2020.
- Spatial Priming for Detecting Human-Object Interactions. Bansal, Rambhatla, Shrivastava, Chellappa. Under Submission, 2020.
- Visual Question Answering on Image Sets. *Bansal, Zhang, Chellappa*. Under Submission, 2020.

Face Recognition

- UMDFaces: An Annotated Face Dataset for Training Deep Networks. Bansal, Nanduri, Castillo, Ranjan, Chellappa. International Joint Conference on Biometrics (IJCB), 2017.
- The Do's and Don'ts for CNN-Based Face Verification. Bansal, Castillo, Ranjan, Chellappa. International Conference on Computer Vision (ICCV) Workshops, 2017.
- Deep Learning for Understanding Faces. Ranjan, Sankaranarayanan, Bansal, Bodla, Chen, Patel, Castillo, Chellappa. IEEE Signal Processing Magazine, 2017.
- Deep Features for Recognizing Disguised Faces in the Wild. Bansal, Ranjan, Castillo, Chellappa. Computer Vision and Pattern Recognition (CVPR) Workshops, 2018.
- A Fast and Accurate System for Face Detection, Identification, and Verification. Ranjan, Bansal, Zheng, Xu, Gleason, Lu, Nanduri, Chen, Castillo, Chellappa. IEEE Transactions on Biometrics, Behavior, and Identity Science (T-BIOM), 2019.

Deep CNN-based Face Recognition

Ankan Bansal, Rajeev Ranjan, Anirudh Nanduri, Jun-Cheng Chen, Carlos Castillo, Rama Chellappa

Deep CNN-based Face Recognition

Zero-Shot Object Detection Functional Generalization Spatial Priming for HOI Detection UMDFaces Dos and Donts Fast and Accurate

UMDFaces

- 367,888 annotated faces
- 8,277 unique identities

Deep CNN-based Face Recognition

Spatial Priming for HOI Detection

Zero-Shot Object Detection

UMDFaces Dos and Donts Fast and Accura

UMDFaces-Videos

- 22,075 videos for 3,107 identities
- 3,735,476 annotated frames

- Can we train CNNs on still images and expect them to work for videos?
 - No. Using mixed data is better for both mixed test datasets and video test datasets
- Are deeper datasets better than wider datasets?
 Depends on the network. Deeper datasets work well for deep networks and wide datasets work well for shallow networks
- Does label noise improve performance of deep networks?
 No. Clean data is the best
- Is alignment necessary for good performance in face recognition?
 Yes. Good keypoints and alignment lead to performance improvements

- Can we train CNNs on still images and expect them to work for videos?
 No. Using mixed data is better for both mixed test datasets and video test datasets
- Are deeper datasets better than wider datasets?
 Depends on the network. Deeper datasets work well for deep networks and wide datasets work well for shallow networks
- Does label noise improve performance of deep networks?
 No. Clean data is the best
- Is alignment necessary for good performance in face recognition?
 Yes. Good keypoints and alignment lead to performance improvements

UMDFaces Dos and Donts Fast and Accurate

- Can we train CNNs on still images and expect them to work for videos?
 No. Using mixed data is better for both mixed test datasets and video test datasets
- Are deeper datasets better than wider datasets?

Depends on the network. Deeper datasets work well for deep networks and wide datasets work well for shallow networks

- Does label noise improve performance of deep networks? No. Clean data is the best
- Is alignment necessary for good performance in face recognition?
 Yes. Good keypoints and alignment lead to performance improvements

- Can we train CNNs on still images and expect them to work for videos?
 No. Using mixed data is better for both mixed test datasets and video test datasets
- Are deeper datasets better than wider datasets?
 Depends on the network. Deeper datasets work well for deep networks and wide datasets work well for shallow networks
- Does label noise improve performance of deep networks?
 No. Clean data is the best
- Is alignment necessary for good performance in face recognition? Yes. Good keypoints and alignment lead to performance improvements

- Can we train CNNs on still images and expect them to work for videos?
 No. Using mixed data is better for both mixed test datasets and video test datasets
- Are deeper datasets better than wider datasets?
 Depends on the network. Deeper datasets work well for deep networks and wide datasets work well for shallow networks
- Does label noise improve performance of deep networks?
 No. Clean data is the best
- Is alignment necessary for good performance in face recognition? Yes. Good keypoints and alignment lead to performance improvements

- Can we train CNNs on still images and expect them to work for videos?
 No. Using mixed data is better for both mixed test datasets and video test datasets
- Are deeper datasets better than wider datasets?
 Depends on the network. Deeper datasets work well for deep networks and wide datasets work well for shallow networks
- Does label noise improve performance of deep networks? No. Clean data is the best
- Is alignment necessary for good performance in face recognition? Yes. Good keypoints and alignment lead to performance improvements

- Can we train CNNs on still images and expect them to work for videos?
 No. Using mixed data is better for both mixed test datasets and video test datasets
- Are deeper datasets better than wider datasets?
 Depends on the network. Deeper datasets work well for deep networks and wide datasets work well for shallow networks
- Does label noise improve performance of deep networks? No. Clean data is the best
- Is alignment necessary for good performance in face recognition?
 Yes. Good keypoints and alignment lead to performance improvement

- Can we train CNNs on still images and expect them to work for videos?
 No. Using mixed data is better for both mixed test datasets and video test datasets
- Are deeper datasets better than wider datasets?
 Depends on the network. Deeper datasets work well for deep networks and wide datasets work well for shallow networks
- Does label noise improve performance of deep networks? No. Clean data is the best
- Is alignment necessary for good performance in face recognition?
 Yes. Good keypoints and alignment lead to performance improvements

UMDFaces Dos and Donts Fast and Accurate

A Fast and Accurate Face Recognition System

Deep CNN-based Face Recognition

Zero-Shot Object Detection Functional Generalization Spatial Priming for HOI Detection

Face Detector: DPSSD

Ranjan et al., A Fast and Accurate System for Face Detection, Identification, and Verification, T-BIOM, 2019

Deep CNN-based Face Recognition

Zero-Shot Object Detection Functional Generalization Spatial Priming for HOI Detection UMDFaces Dos and Donts Fast and Accurate

Ranjan et al., A Fast and Accurate System for Face Detection, Identification, and Verification, T-BIOM, 2019

UMDFaces Dos and Donts Fast and Accurate

Crystal Loss

minimize
$$-\frac{1}{M} \sum_{i=1}^{M} \log \frac{e^{W_{y_i}^T f(\mathbf{x}_i) + b_{y_i}}}{\sum_{j=1}^{C} e^{W_j^T f(\mathbf{x}_i) + b_j}}$$
subject to $\|f(\mathbf{x}_i)\|_2 = \alpha, \quad \forall i = 1, 2, ...M,$

Ranjan et al., A Fast and Accurate System for Face Detection, Identification, and Verification, T-BIOM, 2019

UMDFaces Dos and Donts Fast and Accurate

Inception ResNet-v2

- Input size 299×299
- Trained on Universe MS1M + UMDFaces + UMDFaces-Videos

UMDFaces Dos and Donts Fast and Accurate

Evaluation

IJB-A

- 500 subjects
- 5,400 images, 2,000 videos split into 20,400 frames

IJB-B

- 1,800 subjects
- 22,000 images, 55,000 video frames
- 8,000,000 imposter pairs and 10,270 genuine pairs for 1:1 verification

UMDFaces Dos and Donts Fast and Accurate

	TAR (%) @ FAR				
Method	0.0001	0.001	0.01	0.1	
Wang <i>et al.</i> - Casia	-	51.4	73.2	89.5	
AbdAlmageed et al. 2016	-	-	78.7	91.1	
NAN	-	88.1	94.1	97.8	
Masi <i>at al.</i> 2016	-	72.5	88.6	-	
Chen <i>et al.</i> DCNN _{fusion}	-	76.0	88.9	96.8	
DCNN _{tpe}	-	81.3	90.0	96.4	
DCNN _{all}	-	78.7	89.3	96.8	
All-In-One	-	82.3	92.2	97.6	
Template Adaptation	-	-	93.9	-	
RX101 _{/2+tpe}	90.9	94.3	97.0	98.4	
Ours	91.7	95.3	96.8	98.3	

Table: IJB-A 1:1 Verification

UMDFaces Dos and Donts Fast and Accurate

	TAR (%) @ FAR					
Method	10^{-6}	10^{-5}	10^{-4}	10 ⁻³	10 ⁻²	10 ⁻¹
VGGFaces	-	-	55.0	72.0	86.0	-
FacePoseNet	-	-	83.2	91.6	96.5	-
Light CNN-29	-	-	87.7	92.0	95.3	-
VGGFace2	-	70.5	83.1	90.8	95.6	-
Center Loss	31.0	63.6	80.7	90.0	95.1	98.4
MN-vc	-	-	83.1	90.9	95.8	98.5
SENet50+DCN	-	-	84.9	93.7	97.5	99.7
ArcFace	37.5	89.0	94.2	96.0	<u>97.5</u>	98.4
Ours	27.7	61.6	89.1	94.3	97.0	98.7

Table: IJB-B 1:1 Verification

Zero-Shot Object Detection

Ankan Bansal, Karan Sikka, Gaurav Sharma, Rama Chellappa, Ajay Divakaran

Introduction Approach

Introduction Approach Experiments

- Images from few (seen) classes available for training
- Test on unseen classes

Introduction Approach Experiments

Baseline Approach

- Project bounding box, b_i , to the joint semantic-visual space $\psi_i = W_p \phi(b_i)$
- Maximize cosine similarity between ψ_i , and class embeddings, w_i

Introduction Approach Experiments

Ranking Loss

$$\mathcal{L}(b_i, y_i, heta) = \sum_{j \in \mathcal{S}, j
eq i} \max(0, m - S_{ii} + S_{ij})$$

where $\ensuremath{\mathcal{S}}$ is the set of all seen classes

Prediction

$$\hat{y}_i = \operatorname{argmax}_{j \in \mathcal{U}} S_{ij}$$

where $\ensuremath{\mathcal{U}}$ is the set of test classes

Introduction Approach Experiments

Introduction Approach Experiments

Statically Assigned Background (SB)

• Add a fixed "background" label and assign all background boxes to this label

Introduction Approach Experiments

Latent Assignment Based (LAB) ZSD

- · Spread background boxes across the embedding space
- EM-like approach that iteratively

(1) assigns classes from a large vocabulary to background boxes, and(2) fine-tunes the model

· Background boxes could possibly belong to the "background set"

Introduction Approach Experiments

Densely Sampled Embedding Space (DSES)

- Joint embeddings suffer from sparse sampling in the visual-semantic space
- Augment labels with OpenImages (OI)

Introduction Approach Experiments

Datasets

Dataset	Seen Classes	Unseen Classes	# Training Boxes
MSCOCO	48	17	1.4 million
VisualGenome (VG)	478	130	5.8 million
OpenImages	545	-	400 thousand
Introduction Approach Experiments

Train and Test Splits

Introduction Approach Experiments

Train and Test Splits

Introduction Approach Experiments

Train and Test Splits

Introduction Approach Experiments

Evaluation - IoU

Introduction Approach Experiments

Evaluation

- Recall@K \rightarrow Recall when the top K boxes are selected
- *K* = 100

Introduction Approach Experiments

		MSCOCO				VisualGenome						
ZSD	BG-	#classes		loU		#classes			loU			
method	aware	$ \mathcal{S} $	$ \mathcal{U} \mid \mathcal{O} $	0.4	0.5	0.6	$ \mathcal{S} $	$ \mathcal{U} $	$ \mathcal{O} $	0.4	0.5	0.6
Baseline		48	17 0	34.36	22.14	11.31	478	130	0	8.19	5.19	2.63
SB	 ✓ 	48	17 1	34.46	24.39	12.55	478	130	1	6.06	4.09	2.43
DSES		378	17 0	40.23	27.19	13.63	716	130	0	7.78	4.75	2.34
LAB	 ✓ 	48	17 343	31.86	20.52	9.98	478	130	1673	8.43	5.40	2.74

Table: Recall@100 performance (%) for different methods at several IoU thresholds. |S|, |U|, and |O| are the number of seen, unseen and the average number of active background classes considered during training respectively.

Introduction Approach Experiments

Figure: Results for LAB for VisualGenome (row 1) and SB model (row 2) for MSCOCO.

Object Detection

Human-Object Interaction Detection

Detecting Human-Object Interactions via Functional Generalization

Ankan Bansal, Sai Saketh Rambhatla, Abhinav Shrivastava, Rama Chellappa

Deep CNN-based Face Recognition Introduction Zero-Shot Object Detection Idea Functional Generalization Approach Spatial Priming for HOI Detection Experiments

Triplets of the form: (human, predicate, object)

 Deep CNN-based Face Recognition
 Introduction

 Zero-Shot Object Detection
 Idea

 Functional Generalization
 Approach

 Spatial Priming for HOI Detection
 Experiments

(human, ride, bicycle) (human, sit_on, bicycle) (human, straddle, bicycle)

(human, sit_on, bicycle)

 Deep CNN-based Face Recognition
 Intr

 Zero-Shot Object Detection
 Ide

 Functional Generalization
 App

 Spatial Priming for HOI Detection
 Exp

Introduction Idea Approach Experiments

Humans interaction with functionally similar objects in a similar manner

Deep CNN-based Face Recognition Introduction Zero-Shot Object Detection Idea Functional Generalization Approach Spatial Priming for HOI Detection Experiments

- Humans interact with similar objects similarly
- Additional data obtained by replacing objects by functionally similar objects

Deep CNN-based Face Recognition Introduction Zero-Shot Object Detection Idea Functional Generalization Approach Spatial Priming for HOI Detection Experimen

Faster RCNN

• Outputs the bounding boxes, object classes, and ROI pooled features

Deep CNN-based Face Recognition Introc Zero-Shot Object Detection Idea Functional Generalization Appror Spatial Priming for HOI Detection Experi

Introduction Idea **Approach** Experiments

Functional Generalization

• An object can be replaced by a functionally similar object

Introduction Idea **Approach** Experiments

Functional Generalization Module

Word Embeddings

- 300-D vectors, w_h and w_o , from word2vec
- Incorporate semantic information

Layout Features

- *f_g* encodes the relative sizes and orientations of *b_h* and *b_o*
- 14-D feature

Introduction Idea **Approach** Experiments

Layout Feature

$$f_{g} = \left[\frac{x_{1}^{h}}{W}, \frac{y_{1}^{h}}{H}, \frac{x_{2}^{h}}{W}, \frac{y_{2}^{h}}{H}, \frac{A^{h}}{A^{l}}, \frac{x_{1}^{o}}{W}, \frac{y_{1}^{o}}{H}, \frac{x_{2}^{o}}{W}, \frac{y_{2}^{o}}{H}, \frac{A^{o}}{A^{l}}, \\ \left(\frac{x_{1}^{h} - x_{1}^{o}}{x_{2}^{o} - x_{1}^{o}}\right), \left(\frac{y_{1}^{h} - y_{1}^{o}}{y_{2}^{o} - y_{1}^{o}}\right), \log\left(\frac{x_{2}^{h} - x_{1}^{h}}{x_{2}^{o} - x_{1}^{o}}\right), \log\left(\frac{y_{2}^{h} - y_{1}^{h}}{y_{2}^{o} - y_{1}^{o}}\right)\right]$$

ankan.umiacs.io

Introduction Idea **Approach** Experiments

Finding Similar Objects

- WordNet hierarchy?
- Large vocabulary of objects $\mathcal{V} = \{o_1, o_2, \dots, o_n\}$
- · Concatenate visual features and word vectors
- Cluster into k clusters
- · Objects in the same cluster are functionally similar

Deep CNN-based Face Recognition Introductio Zero-Shot Object Detection Idea Functional Generalization Approach Spatial Priming for HOI Detection Experimen

- 'Pitcher', 'Teapot', 'Kettle', 'Jug'
- 'Elephant', 'Dinosaur', 'Horse', 'Zebra', 'Mule', 'Camel', 'Bull'
- 'Can', 'Cup', 'Glass', 'Bottle'
- 'Cake', 'Muffin', 'Cheese', 'Donut'
- 'Apple', 'Pear', 'Peach', 'Fig'

Introduction Idea **Approach** Experiments

Functional Generalization

- $\langle \text{human, drink, glass} \rangle \rightarrow \langle \text{human, drink, cup} \rangle$, $\langle \text{human, drink, can} \rangle$
- $\langle \texttt{human, ride, elephant} \rangle \rightarrow \langle \texttt{human, ride, horse} \rangle, \langle \texttt{human, ride, camel} \rangle$

Deep CNN-based Face Recognition Introduction Zero-Shot Object Detection Idea Functional Generalization Approach Spatial Priming for HOI Detection Experiments

HICO-Det

- 600 HOI triplet categories for 80 objects
- Training set 38,000 images with 120,000 HOI annotations
- Test set 9,600 images with 33,400 HOI instances

Deep CNN-based Face Recognition	
Zero-Shot Object Detection	
Functional Generalization	
Spatial Priming for HOI Detection	Experiments

- Metric: Mean Average Precision (mAP %)
- Three settings: Full, Rare, Non-rare

Deep CNN-based Face Recognition	Introduction
Zero-Shot Object Detection	Idea
Functional Generalization	Approach
Spatial Priming for HOI Detection	Experiments

Method	Full (600 classes)	Rare (138 classes)	Non-rare (462 classes)
Shen <i>et al.</i>	6.46	4.24	7.12
HO-RCNN + IP	7.30	4.68	8.08
HO-RCNN + IP + S	7.81	5.37	8.54
InteractNet	9.94	7.16	10.77
iHOI	9.97	7.11	10.83
GPNN	13.11	9.34	14.23
ICAN	14.84	10.45	16.15
Gupta <i>et al.</i>	17.18	12.17	18.68
Interactiveness Prior	17.22	13.51	18.32
Peyre <i>et al.</i>	19.40	15.40	20.75
Functional Generalization (Ours)	21.96	16.43	23.62
) for the LICO	Det deteest	

 Table: mAP (%) for the HICO-Det dataset.

Introduction Idea Approach **Experiments**

Zero-Shot HOI Detection

- Seen object setting At least one interaction seen for each object
- Unseen object setting

No interactions seen for some object classes

Deep CNN-based Face Recognition	Introduction
Zero-Shot Object Detection	Idea
Functional Generalization	Approach
Spatial Priming for HOI Detection	Experiments

	Unseen	Seen	All
Method	(120 classes)	(480 classes)	(600 classes)
Shen <i>et al.</i>	5.62	-	6.26
Ours	10.93	12.60	12.26
able: Performa	ance (mAP %) ir	n the seen object	ct zero-shot set

	Unseen	Seen	All			
Method	(100 classes)	(500 classes)	(600 classes)			
Ours	11.22	14.36	13.84			
Table: Performance (mAP %) in the unseen object setting						

Layout Features

- *f_g* encodes the relative sizes and orientations of *b_h* and *b_o*
- 14-D feature

$$f_{g} = \left[\frac{x_{1}^{h}}{W}, \frac{y_{1}^{h}}{H}, \frac{x_{2}^{h}}{W}, \frac{y_{2}^{h}}{H}, \frac{A^{h}}{A^{i}}, \frac{x_{1}^{o}}{W}, \frac{y_{1}^{o}}{H}, \frac{x_{2}^{o}}{W}, \frac{y_{2}^{o}}{H}, \frac{A^{o}}{A^{i}}, \\ \left(\frac{x_{1}^{h} - x_{1}^{o}}{x_{2}^{o} - x_{1}^{o}}\right), \left(\frac{y_{1}^{h} - y_{1}^{o}}{y_{2}^{o} - y_{1}^{o}}\right), \log\left(\frac{x_{2}^{h} - x_{1}^{h}}{x_{2}^{o} - x_{1}^{o}}\right), \log\left(\frac{y_{2}^{h} - y_{1}^{h}}{y_{2}^{o} - y_{1}^{o}}\right)\right]$$

Spatial Priming for Detecting Human-Object Interactions

Ankan Bansal, Sai Saketh Rambhatla, Abhinav Shrivastava, Rama Chellappa
- Relative location of human and object provides useful clues
- Can make guesses based on the layout

Introduction

Approach Experiments

Introduction Approach Experiments

Layout Module

- · Lateral connections from the visual module for visual context
- Semantic knowledge in the form of word2vec word vectors

Introduction Approach Experiments

Visual Module

Uses outputs of the layout module and features from the object detector

Introduction Approach Experiments

Lateral Connections

• Explicitly share visual context not available in the layout module

Spatial Priming

- Predictions from L prime the visual module
- Refined by the visual module

Introduction Approach Experiments

HICO-Det

- 600 HOI triplet categories for 80 objects
- Training set 38,000 images with 120,000 HOI annotations
- Test set 9,600 images with 33,400 HOI instances

- Metric: Mean Average Precision (mAP %)
- Three settings: Full, Rare, Non-rare

Introduction Approach Experiments

	Full	Rare	Non-rare
Method	(600 classes)	(138 classes)	(462 classes)
Shen <i>et al.</i>	6.46	4.24	7.12
HO-RCNN + IP	7.30	4.68	8.08
HO-RCNN + IP + S	7.81	5.37	8.54
InteractNet	9.94	7.16	10.77
iHOI	9.97	7.11	10.83
GPNN	13.11	9.34	14.23
ICAN	14.84	10.45	16.15
Gupta <i>et al.</i>	17.18	12.17	18.68
Interactiveness Prior	17.22	13.51	18.32
Peyre <i>et al.</i>	19.40	15.40	20.75
Functional Generalization (Ours)	21.96	16.43	23.62
Spatial Priming (Ours)	24.79	14.77	27.79

Table: Performance (mAP %) on HICO-Det

Introduction Approach Experiments

Zero-Shot HOI Detection

	Unseen	Seen	All
Method	(120 classes)	(480 classes)	(600 classes)
Shen <i>et al.</i>	5.62	-	6.26
Func. Gen. (Ours)	10.93	12.60	12.26
Ours	11.06	21.41	19.34

Table: Zero-shot HOI detection (mAP %)

Introduction Approach Experiments

No Priming

	Full	Rare	Non-rare
Method	(600 classes)	(138 classes)	(462 classes)
V-L-add (NP)	23.41	12.14	26.78
NC	22.56	12.78	25.48
L-V	22.45	12.23	25.50
V-L-concat	22.76	11.78	26.04

Table: mAP % for the model without priming (NP). NC is same model without lateral connections

Introduction Approach Experiments

No Lateral Connections

Method	Model	Full (600 classes)	Rare (138 classes)	Non-rare (462 classes)
NI		(000 0.000000)	((
	L V	23.90	10.82	21.38 27.81
NL - f _h - f _o	L	17.44	10.14	19.62
	V	23.19	14.71	25.72
NL - <i>w</i> o	L	16.33	8.45	18.69
	V	22.91	11.29	26.39

Table: Performance (mAP %) for the model without lateral connections

Visual Question Answering on Image Sets Ankan Bansal, Yuting Zhang, Rama Chellappa

Visual Question Answering on Image Sets

- Answer questions about a set of images
- Relate objects in one or more images
- Dataset indoor and outdoor scenes
- VQA baselines

what the largest object in the room?

what kind of car is in front of the white car?

- Datasets and deep networks for face recognition
- Additional sources of information for vision problems
- Semantic information from large-scale text data
- Data augmentation strategies using semantic information
- Deep encoding of geometric layout

• Datasets and deep networks for face recognition

- Additional sources of information for vision problems
- Semantic information from large-scale text data
- Data augmentation strategies using semantic information
- Deep encoding of geometric layout

- Datasets and deep networks for face recognition
- Additional sources of information for vision problems
- Semantic information from large-scale text data
- Data augmentation strategies using semantic information
- Deep encoding of geometric layout

- Datasets and deep networks for face recognition
- Additional sources of information for vision problems
- Semantic information from large-scale text data
- Data augmentation strategies using semantic information
- Deep encoding of geometric layout

- Datasets and deep networks for face recognition
- Additional sources of information for vision problems
- Semantic information from large-scale text data
- Data augmentation strategies using semantic information
- Deep encoding of geometric layout

- Datasets and deep networks for face recognition
- Additional sources of information for vision problems
- Semantic information from large-scale text data
- Data augmentation strategies using semantic information
- Deep encoding of geometric layout

- Frame semantics for video understanding
- Annotated artwork for HOI detection
- Lexical ontology and hierarchical prediction for ZSD
- Better BERT-type models for jointly learning visual-semantic spaces

• Frame semantics for video understanding

- Annotated artwork for HOI detection
- Lexical ontology and hierarchical prediction for ZSD
- Better BERT-type models for jointly learning visual-semantic spaces

- Frame semantics for video understanding
- Annotated artwork for HOI detection
- Lexical ontology and hierarchical prediction for ZSD
- Better BERT-type models for jointly learning visual-semantic spaces

- Frame semantics for video understanding
- Annotated artwork for HOI detection
- Lexical ontology and hierarchical prediction for ZSD
- Better BERT-type models for jointly learning visual-semantic spaces

- Frame semantics for video understanding
- Annotated artwork for HOI detection
- Lexical ontology and hierarchical prediction for ZSD
- Better BERT-type models for jointly learning visual-semantic spaces

Questions?

Face Recognition

Zero-Shot Object Detection

Functional Generalization

Spatial Priming for HOI Detection