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Detecting Objects and Interactions

• Zero-Shot Object Detection. Bansal, Sikka, Sharma, Chellappa, Divakaran.
European Conference on Computer Vision (ECCV), 2018.

• Detecting Human-Object Interactions via Functional Generalization. Bansal,
Rambhatla, Shrivastava, Chellappa. Thirty-Fourth AAAI Conference on
Artificial Intelligence (AAAI), 2020.

• Spatial Priming for Detecting Human-Object Interactions. Bansal,
Rambhatla, Shrivastava, Chellappa. Under Submission, 2020.

• Visual Question Answering on Image Sets. Bansal, Zhang, Chellappa.
Under Submission, 2020.



Face Recognition

• UMDFaces: An Annotated Face Dataset for Training Deep Networks.
Bansal, Nanduri, Castillo, Ranjan, Chellappa. International Joint Conference
on Biometrics (IJCB), 2017.

• The Do’s and Don’ts for CNN-Based Face Verification. Bansal, Castillo,
Ranjan, Chellappa. International Conference on Computer Vision (ICCV)
Workshops, 2017.

• Deep Learning for Understanding Faces. Ranjan, Sankaranarayanan,
Bansal, Bodla, Chen, Patel, Castillo, Chellappa. IEEE Signal Processing
Magazine, 2017.

• Deep Features for Recognizing Disguised Faces in the Wild. Bansal,
Ranjan, Castillo, Chellappa. Computer Vision and Pattern Recognition
(CVPR) Workshops, 2018.

• A Fast and Accurate System for Face Detection, Identification, and
Verification. Ranjan, Bansal, Zheng, Xu, Gleason, Lu, Nanduri, Chen,
Castillo, Chellappa. IEEE Transactions on Biometrics, Behavior, and Identity
Science (T-BIOM), 2019.



Deep CNN-based Face
Recognition

Ankan Bansal, Rajeev Ranjan, Anirudh Nanduri, Jun-Cheng Chen, Carlos Castillo, Rama Chellappa



Deep CNN-based Face Recognition
Zero-Shot Object Detection

Functional Generalization
Spatial Priming for HOI Detection

UMDFaces
Dos and Donts
Fast and Accurate

UMDFaces

• 367,888 annotated faces
• 8,277 unique identities
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Deep CNN-based Face Recognition
Zero-Shot Object Detection
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UMDFaces-Videos

• 22,075 videos for 3,107 identities
• 3,735,476 annotated frames
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Deep CNN-based Face Recognition
Zero-Shot Object Detection

Functional Generalization
Spatial Priming for HOI Detection

UMDFaces
Dos and Donts
Fast and Accurate

• Can we train CNNs on still images and expect them to work for videos?
No. Using mixed data is better for both mixed test datasets and video test
datasets
• Are deeper datasets better than wider datasets?

Depends on the network. Deeper datasets work well for deep networks and
wide datasets work well for shallow networks
• Does label noise improve performance of deep networks?

No. Clean data is the best
• Is alignment necessary for good performance in face recognition?

Yes. Good keypoints and alignment lead to performance improvements
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A Fast and Accurate Face Recognition System

Input Image Face Detection 

All-In-One 
Face 

Detected Fiducial Points 

Face DCNNs 

Face DCNNs 

Aligned 
Faces 

DPSSD 

Matching 

Feature Extraction 
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Face Detector: DPSSD

Ranjan et al., A Fast and Accurate System for Face Detection,Identification, and Verification, T-BIOM, 2019
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Crystal Loss

minimize − 1
M

M∑
i=1

log
eW T

yi
f (xi )+byi∑C

j=1 eW T
j f (xi )+bj

subject to ‖f (xi)‖2 = α, ∀i = 1,2, ...M,

Ranjan et al., A Fast and Accurate System for Face Detection,Identification, and Verification, T-BIOM, 2019
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Inception ResNet-v2
• Input size 299× 299
• Trained on Universe - MS1M + UMDFaces + UMDFaces-Videos
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Evaluation

IJB-A
• 500 subjects
• 5,400 images, 2,000 videos split into 20,400 frames

IJB-B
• 1,800 subjects
• 22,000 images, 55,000 video frames
• 8,000,000 imposter pairs and 10,270 genuine pairs for 1:1 verification
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Deep CNN-based Face Recognition
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Functional Generalization
Spatial Priming for HOI Detection

UMDFaces
Dos and Donts
Fast and Accurate

TAR (%) @ FAR

Method 0.0001 0.001 0.01 0.1

Wang et al. - Casia - 51.4 73.2 89.5
AbdAlmageed et al. 2016 - - 78.7 91.1
NAN - 88.1 94.1 97.8
Masi at al. 2016 - 72.5 88.6 -
Chen et al. DCNNfusion - 76.0 88.9 96.8
DCNNtpe - 81.3 90.0 96.4
DCNNall - 78.7 89.3 96.8
All-In-One - 82.3 92.2 97.6
Template Adaptation - - 93.9 -
RX101l2+tpe 90.9 94.3 97.0 98.4

Ours 91.7 95.3 96.8 98.3

Table: IJB-A 1:1 Verification

ankan.umiacs.io Ankan Bansal Scene Understanding 18 / 83



Deep CNN-based Face Recognition
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Functional Generalization
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UMDFaces
Dos and Donts
Fast and Accurate

TAR (%) @ FAR

Method 10−6 10−5 10−4 10−3 10−2 10−1

VGGFaces - - 55.0 72.0 86.0 -
FacePoseNet - - 83.2 91.6 96.5 -
Light CNN-29 - - 87.7 92.0 95.3 -
VGGFace2 - 70.5 83.1 90.8 95.6 -
Center Loss 31.0 63.6 80.7 90.0 95.1 98.4
MN-vc - - 83.1 90.9 95.8 98.5
SENet50+DCN - - 84.9 93.7 97.5 99.7
ArcFace 37.5 89.0 94.2 96.0 97.5 98.4

Ours 27.7 61.6 89.1 94.3 97.0 98.7

Table: IJB-B 1:1 Verification
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Zero-Shot Object Detection
Ankan Bansal, Karan Sikka, Gaurav Sharma, Rama Chellappa, Ajay Divakaran
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Approach
Experiments
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• Images from few (seen) classes available for training
• Test on unseen classes
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Baseline Approach

CNN

Embedding in joint 

semantic-visual spaceBounding boxes 

from training classes

lion

cat man

car

child

sign

• Project bounding box, bi , to the joint semantic-visual space ψi = Wpφ(bi)

• Maximize cosine similarity between ψi , and class embeddings, wi

ankan.umiacs.io Ankan Bansal Scene Understanding 23 / 83



Deep CNN-based Face Recognition
Zero-Shot Object Detection

Functional Generalization
Spatial Priming for HOI Detection

Introduction
Approach
Experiments

Ranking Loss

L(bi , yi , θ) =
∑

j∈S,j 6=i

max(0,m − Sii + Sij)

where S is the set of all seen classes

Prediction

ŷi = argmaxj∈USij

where U is the set of test classes
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Statically Assigned Background (SB)

Background 

bounding boxes

CNN

Embedding in joint 

semantic-visual space

lion

cat man

car

child

sign

• Add a fixed “background” label and assign all background boxes to this label
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Latent Assignment Based (LAB) ZSD

• Spread background boxes across the embedding space
• EM-like approach that iteratively

(1) assigns classes from a large vocabulary to background boxes, and
(2) fine-tunes the model

• Background boxes could possibly belong to the “background set”
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Densely Sampled Embedding Space (DSES)

• Joint embeddings suffer from sparse sampling in the visual-semantic space
• Augment labels with OpenImages (OI)
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Introduction
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Experiments

Datasets

Dataset Seen Classes Unseen Classes # Training Boxes

MSCOCO 48 17 1.4 million

VisualGenome (VG) 478 130 5.8 million

OpenImages 545 - 400 thousand
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Train and Test Splits
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Evaluation - IoU
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Evaluation

• Recall@K→ Recall when the top K boxes are selected
• K = 100
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Introduction
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MSCOCO VisualGenome
ZSD BG- #classes IoU #classes IoU

method aware |S| |U| |O| 0.4 0.5 0.6 |S| |U| |O| 0.4 0.5 0.6

Baseline 48 17 0 34.36 22.14 11.31 478 130 0 8.19 5.19 2.63

SB X 48 17 1 34.46 24.39 12.55 478 130 1 6.06 4.09 2.43

DSES 378 17 0 40.23 27.19 13.63 716 130 0 7.78 4.75 2.34

LAB X 48 17 343 31.86 20.52 9.98 478 130 1673 8.43 5.40 2.74

Table: Recall@100 performance (%) for different methods at several IoU thresholds. |S|, |U|,
and |O| are the number of seen, unseen and the average number of active background classes
considered during training respectively.
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Figure: Results for LAB for VisualGenome (row 1) and SB model (row 2) for MSCOCO.
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Object Detection
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Human-Object Interaction Detection
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Detecting Human-Object
Interactions via Functional

Generalization
Ankan Bansal, Sai Saketh Rambhatla, Abhinav Shrivastava, Rama Chellappa
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Triplets of the form: 〈human, predicate, object〉
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Humans interaction with functionally similar objects in a similar manner
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• Humans interact with similar objects similarly
• Additional data obtained by replacing objects by functionally similar objects
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• Outputs the bounding boxes, object classes, and ROI pooled features
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Functional Generalization

• An object can be replaced by a functionally similar object
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Functional Generalization Module
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Word Embeddings
• 300-D vectors, wh and wo, from word2vec

• Incorporate semantic information
Layout Features
• fg encodes the relative sizes and

orientations of bh and bo

• 14-D feature
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Finding Similar Objects

• WordNet hierarchy?
• Large vocabulary of objects V = {o1,o2, . . . ,on}
• Concatenate visual features and word vectors
• Cluster into k clusters
• Objects in the same cluster are functionally similar
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• ‘Pitcher’, ‘Teapot’, ‘Kettle’, ‘Jug’
• ‘Elephant’, ‘Dinosaur’, ‘Horse’, ‘Zebra’, ‘Mule’, ‘Camel’, ‘Bull’
• ‘Can’, ‘Cup’, ‘Glass’, ‘Bottle’
• ‘Cake’, ‘Muffin’, ‘Cheese’, ‘Donut’
• ‘Apple’, ‘Pear’, ‘Peach’, ‘Fig’
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Functional Generalization
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• 〈human, drink, glass〉 → 〈human, drink, cup〉, 〈human, drink, can〉
• 〈human, ride, elephant〉 → 〈human, ride, horse〉, 〈human, ride, camel〉
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HICO-Det
• 600 HOI triplet categories for 80 objects
• Training set - 38,000 images with 120,000 HOI annotations
• Test set - 9,600 images with 33,400 HOI instances
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• Metric: Mean Average Precision (mAP %)
• Three settings: Full, Rare, Non-rare
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Full Rare Non-rare
Method (600 classes) (138 classes) (462 classes)

Shen et al. 6.46 4.24 7.12
HO-RCNN + IP 7.30 4.68 8.08
HO-RCNN + IP + S 7.81 5.37 8.54
InteractNet 9.94 7.16 10.77
iHOI 9.97 7.11 10.83
GPNN 13.11 9.34 14.23
ICAN 14.84 10.45 16.15
Gupta et al. 17.18 12.17 18.68
Interactiveness Prior 17.22 13.51 18.32
Peyre et al. 19.40 15.40 20.75

Functional Generalization (Ours) 21.96 16.43 23.62

Table: mAP (%) for the HICO-Det dataset.
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Zero-Shot HOI Detection

- Seen object setting
At least one interaction seen for each object

- Unseen object setting
No interactions seen for some object classes
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Unseen Seen All
Method (120 classes) (480 classes) (600 classes)

Shen et al. 5.62 - 6.26

Ours 10.93 12.60 12.26

Table: Performance (mAP %) in the seen object zero-shot setting

Unseen Seen All
Method (100 classes) (500 classes) (600 classes)

Ours 11.22 14.36 13.84

Table: Performance (mAP %) in the unseen object setting
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• Relative location of human and object provides useful clues
• Can make guesses based on the layout
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Layout Module
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• Lateral connections from the visual module for visual context
• Semantic knowledge in the form of word2vec word vectors
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• Uses outputs of the layout module and features from the object detector
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Lateral Connections
• Explicitly share visual context not available in the layout module

Spatial Priming
• Predictions from L prime the visual module
• Refined by the visual module
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HICO-Det
• 600 HOI triplet categories for 80 objects
• Training set - 38,000 images with 120,000 HOI annotations
• Test set - 9,600 images with 33,400 HOI instances
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• Metric: Mean Average Precision (mAP %)
• Three settings: Full, Rare, Non-rare
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Full Rare Non-rare
Method (600 classes) (138 classes) (462 classes)

Shen et al. 6.46 4.24 7.12
HO-RCNN + IP 7.30 4.68 8.08
HO-RCNN + IP + S 7.81 5.37 8.54
InteractNet 9.94 7.16 10.77
iHOI 9.97 7.11 10.83
GPNN 13.11 9.34 14.23
ICAN 14.84 10.45 16.15
Gupta et al. 17.18 12.17 18.68
Interactiveness Prior 17.22 13.51 18.32
Peyre et al. 19.40 15.40 20.75

Functional Generalization (Ours) 21.96 16.43 23.62

Spatial Priming (Ours) 24.79 14.77 27.79

Table: Performance (mAP %) on HICO-Det
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Zero-Shot HOI Detection

Unseen Seen All
Method (120 classes) (480 classes) (600 classes)

Shen et al. 5.62 - 6.26

Func. Gen. (Ours) 10.93 12.60 12.26

Ours 11.06 21.41 19.34

Table: Zero-shot HOI detection (mAP %)
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Full Rare Non-rare
Method (600 classes) (138 classes) (462 classes)

V-L-add (NP) 23.41 12.14 26.78
NC 22.56 12.78 25.48
L-V 22.45 12.23 25.50
V-L-concat 22.76 11.78 26.04

Table: mAP % for the model without priming (NP). NC is same model without lateral connections

ankan.umiacs.io Ankan Bansal Scene Understanding 77 / 83



Deep CNN-based Face Recognition
Zero-Shot Object Detection

Functional Generalization
Spatial Priming for HOI Detection

Introduction
Approach
Experiments

No Lateral Connections

f1

w
o

p1

R
esN

et50

 Human

Object

C
1C

8 p1

L V

p2

1

Faster R
C
N
N

fh

fo

bh

bo

Union Box

2

fh

fo

f2

Full Rare Non-rare
Method Model (600 classes) (138 classes) (462 classes)

NL L 18.35 8.20 21.38

V 23.90 10.82 27.81

NL - fh - fo L 17.44 10.14 19.62

V 23.19 14.71 25.72

NL - wo L 16.33 8.45 18.69

V 22.91 11.29 26.39

Table: Performance (mAP %) for the model without lateral connections
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Visual Question Answering on Image Sets

- Answer questions about a set of images
- Relate objects in one or more images
- Dataset - indoor and outdoor scenes
- VQA baselines

what the largest object in the room? what is above the toilet wall? what kind of car is in front of the white car?



Conclusion

• Datasets and deep networks for face recognition
• Additional sources of information for vision problems
• Semantic information from large-scale text data
• Data augmentation strategies using semantic information
• Deep encoding of geometric layout
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Ideas for Future Work

• Frame semantics for video understanding
• Annotated artwork for HOI detection
• Lexical ontology and hierarchical prediction for ZSD
• Better BERT-type models for jointly learning visual-semantic spaces
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Questions?

Face Recognition

Input Image Face Detection 

All-In-One 
Face 

Detected Fiducial Points 

Face DCNNs 

Face DCNNs 

Aligned 
Faces 

DPSSD 

Matching 

Feature Extraction 

Zero-Shot Object Detection

Functional Generalization
Spatial Priming for HOI Detection
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