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Detecting Objects and Interactions

e Zero-Shot Object Detection. Bansal, Sikka, Sharma, Chellappa, Divakaran.
European Conference on Computer Vision (ECCV), 2018.

e Detecting Human-Object Interactions via Functional Generalization. Bansal,
Rambhatla, Shrivastava, Chellappa. Thirty-Fourth AAAI Conference on
Artificial Intelligence (AAAI), 2020.

e Spatial Priming for Detecting Human-Object Interactions. Bansal,
Rambhatla, Shrivastava, Chellappa. Under Submission, 2020.

e Visual Question Answering on Image Sets. Bansal, Zhang, Chellappa.
Under Submission, 2020.




Face Recognition

e UMDFaces: An Annotated Face Dataset for Training Deep Networks.
Bansal, Nanduri, Castillo, Ranjan, Chellappa. International Joint Conference

4 Feature CT""'“‘ on Biometrics (IJCB), 2017.
Descriptor Classes
- Fa::::::es b X e The Do’s and Don’ts for CNN-Based Face Verification. Bansal, Castillo,
B Ranjan, Chellappa. International Conference on Computer Vision (ICCV)
= g »... Workshops, 2017.
4 e Deep Learning for Understanding Faces. Ranjan, Sankaranarayanan,
. Bansal, Bodla, Chen, Patel, Castillo, Chellappa. |IEEE Signal Processing

Magazine, 2017.

q )
@... a\‘/’::r:fn e Deep Features for Recognizing Disguised Faces in the Wild. Bansal,
Compute T Ranjan, Castillo, Chellappa. Computer Vision and Pattern Recognition

Test Face pairs Trained DCNN Similarity (CVPR) Workshops, 2018.

Score (sc)

Testing

e e A Fast and Accurate System for Face Detection, Identification, and
) Verification. Ranjan, Bansal, Zheng, Xu, Gleason, Lu, Nanduri, Chen,
Castillo, Chellappa. IEEE Transactions on Biometrics, Behavior, and Identity

Science (T-BIOM), 2019.



Deep CNN-based Face
Recognition

Ankan Bansal, Rajeev Ranjan, Anirudh Nanduri, Jun-Cheng Chen, Carlos Castillo, Rama Chellappa



Deep CNN-based Face Recognition UMDFaces

Dos and Donts

Fast and Accurate

UMDFaces

e 367,888 annotated faces
e 8,277 unique identities
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Deep CNN-based Face Recognition

UMDFaces-Videos

e 22,075 videos for 3,107 identities
e 3,735,476 annotated frames
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Deep CNN-based Face Recognition

UMDFaces
Dos and Donts
Fast and Accurate

e Can we train CNNs on still images and expect them to work for videos?
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Deep CNN-based Face Recognition

UMDFaces
Dos and Donts
Fast and Accurate

e Can we train CNNs on still images and expect them to work for videos?
No. Using mixed data is better for both mixed test datasets and video test
datasets

o Are deeper datasets better than wider datasets?
Depends on the network. Deeper datasets work well for deep networks and
wide datasets work well for shallow networks

e Does label noise improve performance of deep networks?
No. Clean data is the best

e |s alignment necessary for good performance in face recognition?
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Deep CNN-based Face Recognition

UMDFaces
Dos and Donts
Fast and Accurate

e Can we train CNNs on still images and expect them to work for videos?
No. Using mixed data is better for both mixed test datasets and video test
datasets

o Are deeper datasets better than wider datasets?
Depends on the network. Deeper datasets work well for deep networks and
wide datasets work well for shallow networks

e Does label noise improve performance of deep networks?
No. Clean data is the best
e Is alignment necessary for good performance in face recognition?
Yes. Good keypoints and alignment lead to performance improvements
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Deep CNN-based Face Recognition

UMDFaces
Dos and Donts
Fast and Accurate

A Fast and Accurate Face Recognition System

All-In-One
Face

¥

Face Detection

Input Image

Detected Fiducial Points
/ Face DCNNs <+——— ”ﬂ [¢———
-
Aligned
Faces
Matching Face DCNNs —

Feature Extraction
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Deep CNN-based Face Recognition

UMDFaces
Dos and Donts
Fast and Accurate

Face Detector: DPSSD

}-— 2x upsampling + 3x3 convolution ——ﬁ "
Classifier Network

1x1 conv, 256
3x3 conv, 256
Anchor 1 Anciord
2555
1x1 conv, 128 xt me, 128
3 m£v, 128 3x3 conv, 128
5! 30, Tm 0 o2 3 T.v,‘

conva 3 comva 3 f7 etz s
conv2_2

comv1_2
Loss.s Loss,. Loss,, Lossi.

90.51,128

181.02, 256;

detection boxes

362.04, 512

Ranjan et al., A Fast and Accurate System for Face Detection,dentification, and Verification, -BIOM, 2019

Scene Understandini




Deep CNN-based Face Recognition

d Donts
Fast and Accurate

Ranjan et al., A Fast and Accurate System for Face Detection,Identification, and Verification, -BIOM, 2019
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Deep CNN-based Face Recognition

UMDFaces
Dos and Donts
Fast and Accurate

W, (%) +by,

M

L 1 e
minimize —— E log
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M i1 Zj:1 e’ (%) j

subjectto [|[f(X))|l2 =, Vi=1,2,..M,

L2-Normalize

Input Output
. Layer X o
[1x]| [1x]]

Ranjan et al., A Fast and Accurate System for Face Detection,|dentification, and Verification, -B/IOM, 2019
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Deep CNN-based Face Recognition

UMDFaces
Dos and Donts
Fast and Accurate

Inception ResNet-v2
e Input size 299 x 299
e Trained on Universe - MS1M + UMDFaces + UMDFaces-Videos
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Deep CNN-based Face Recognition UMDFaces

Dos and Donts
Fast and Accurate

Evaluation

lJB-A
e 500 subjects
e 5,400 images, 2,000 videos split into 20,400 frames
|JB-B
¢ 1,800 subjects
e 22,000 images, 55,000 video frames
¢ 8,000,000 imposter pairs and 10,270 genuine pairs for 1:1 verification
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Deep CNN-based Face Recognition

UMDFaces
Dos and Donts
Fast and Accurate

| TAR (%) @ FAR

Method 0.0001 0.001 0.01 0.1

Wang et al. - Casia - 514 732 89.5
AbdAlmageed et al. 2016 - - 78.7 91.1
NAN - 88.1 941 9738
Masi at al. 2016 - 725 886 -

Chen et al. DCNNysion - 76.0 88.9 96.8
DCNNype - 81.3 90.0 964
DCNNy - 78.7 89.3 96.8
All-In-One - 823 922 976
Template Adaptation - - 93.9 -

RX101 24 tpe 90.9 943 97.0 984
Ours 91.7 953 96.8 983

Table: IUB-A 1:1 Verification

Ankan Bansal
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Deep CNN-based Face Recognition

UMDFaces
Dos and Donts
Fast and Accurate

| TAR (%) @ FAR

Method 10-¢ 10 10-* 10=® 102 10
VGGFaces - - 55.0 72.0 86.0 -
FacePoseNet - - 83.2 916 96.5 -
Light CNN-29 - - 87.7 920 95.3 -
VGGFace2 - 70.5 831 90.8 956

Center Loss 31.0 63.6 80.7 90.0 951 984

MN-vc - 83.1 909 958 985
SENet50+DCN - - 849 93.7 975 99.7
ArcFace 375 89.0 942 96.0 975 984
Ours 27.7 616 89.1 943 97.0 98.7

Table: [JB-B 1:1 Verification
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Zero-Shot Object Detection

Ankan Bansal, Karan Sikka, Gaurav Sharma, Rama Chellappa, Ajay Divakaran



X R Introduction
Zero-Shot Object Detection
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Zero-Shot Object Detection

e Images from few (seen) classes available for training
e Test on unseen classes

Training on Seen Classes Zero Shot Testing on Unseen Classes
Detection [

\
- [I] >
A

shoulder

[

arm
hand
it o shi

Semantic Knowledge
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Introduction
Approach
Experiments

Zero-Shot Object Detection

Baseline Approach

Embedding in joint
Bounding boxes semantic-visual space
from training classes

e Project bounding box, b;, to the joint semantic-visual space ; = Wpp(b;)
e Maximize cosine similarity between v;, and class embeddings, w;
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Introduction
Approach
Experiments

Zero-Shot Object Detection

Ranking Loss

L(b;,y;,0) = Z max(0, m — S; + Sj)
JES j#i
where S is the set of all seen classes

Prediction

yi = argmax;c,, Sjj

where U is the set of test classes
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Approach
Experiments

Zero-Shot Object Detection

Embedding in joint
Bounding boxes semantic-visual space
from training classes
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Introduction
Approach
Experiments

Zero-Shot Object Detection

Statically Assigned Background (SB)

Embedding in joint
semantic-visual space

Background
bounding boxes

e Add a fixed “background” label and assign all background boxes to this label
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Introduction
Approach
Experiments

Zero-Shot Object Detection

Latent Assignment Based (LAB) ZSD

e Spread background boxes across the embedding space
e EM-like approach that iteratively

(1) assigns classes from a large vocabulary to background boxes, and
(2) fine-tunes the model

e Background boxes could possibly belong to the “background set”
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Zero-Shot Object Detection

Experiments

Densely Sampled Embedding Space (DSES)

¢ Joint embeddings suffer from sparse sampling in the visual-semantic space
e Augment labels with Openlmages (Ol)
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Introduction
Approach
Experiments

Zero-Shot Object Detection

Datasets

Dataset | Seen Classes | Unseen Classes | # Training Boxes
MSCOCO | 48 | 17 | 1.4 million
VisualGenome (VG) | 478 \ 130 \ 5.8 million
Openlmages \ 545 \ - | 400 thousand
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Zero-Shot Object Detection

Train and Test Splits

Introduction
Approach
Experiments
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Bench

Bike Car

Truck
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Zero-Shot Object Detection

Train and Test Splits

Scene Understandini



Zero-Shot Object Detection

Experiments

Evaluation - loU

Area of Overlap
loU =

Area of Union

Predicted bounding box
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Introduction
Approach
Experiments

Zero-Shot Object Detection

Evaluation

¢ Recall@K — Recall when the top K boxes are selected
e K=100
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Introduction

Zero-Shot Object Detection .
Approach

Experiments

MSCOCO VisualGenome

Zsb BG- | #classes | loU |  #classes | loU
method | aware | [S| [[U[ [ [O] | 04 | 05 [ 06 [ [S[[ U] [O] [ 04 ] 05 ] 06
Baseline | | 48 |17 | 0 |34.36|22.14 | 11.31]478 [ 130| 0 |8.19|5.19|2.63

SB | v |48 [17| 1 |34.46|2439 1255|478 |130| 1 |6.06|4.09 | 2.43

DSES | 378 | 17 | 0 |40.23|27.19 | 13.63 | 716 | 130 | 0 |7.78|4.75|2.34

LAB | v | 48 |17 |343|31.86|20.52 | 9.98 | 478 | 130 | 1673 | 8.43 | 5.40 | 2.74

Table: Recall@100 performance (%) for different methods at several loU thresholds. |S]|, ||,
and |O| are the number of seen, unseen and the average number of active background classes
considered during training respectively.
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Introduction
Approach
Experiments

Zero-Shot Object Detection

it

Figure: Results for LAB for VisualGenome (row 1) ad model (fow' ' fr MSCOCO.
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Object Detection




Human-Object Interaction Detection
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Detecting Human-Object
Interactions via Functional
Generalization

Ankan Bansal, Sai Saketh Rambhatla, Abhinav Shrivastava, Rama Chellappa



Introduction
Idea

Functional Generalization Approach
Experiments

Triplets of the form: (human, predicate, object)
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Introduction
Idea

Functional Generalization Approach
Experiments

#positives

200 250 300 350 400 450 500 550 600
HOI Id
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Introduction

Functional Generalization

(human, ride, bicycle)
(human, sit_on, bicycle)
(human, straddle, bicycle)
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Introduction
Idea

Functional Generalization Approach
Experiments

Humans interaction with functionally similar objects in a similar manner J

# pear?
camel? peach?
elephant? potato?
zebra? 4 fig?
giraffe?

& horse?
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g horse?
camel?
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giraffe?

pear?
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potato?
fig?

bell pepper?
cucumber?
potato?
mango?

cake?
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Introduction
Idea

Functional Generalization Approach
Experiments

e Humans interact with similar objects similarly
¢ Additional data obtained by replacing objects by functionally similar objects
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Introduction
Idea

Functional Generalization Approach

Experiments

CNN

S — Wh
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| |( >3 > &
fh o f
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" Pool b g —
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=
b, £
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Faster RCNN = Generalization Module

Scene Understandini

Hold 0.87
Carry 0.43
Kick 0.02
Hit  0.76
Ride 0.03

Drink  0.01




Introduction
Idea

Functional Generalization Approach
Experiments

A 4

o]
S
A 4
Bat Human

o
v
v
m§

-
o
=3

o

@

d

Faster RCNN

¢ Outputs the bounding boxes, object classes, and ROI pooled features
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Introduction
Idea

Functional Generalization Approach
Experiments

Functional Generalization

e An object can be replaced by a functionally similar object

R Wp
[
Human ———» ‘%
glass/bottle/ - g
mug/cup/can s

?;»
|Geometric|

Generalization Module

Ankan Bansal Scene Understanding

ankan.umiacs.io



Introduction
Idea

Functional Generalization Approach
Experiments

Functional Generalization Module

Word Embeddings
e 300-D vectors, wy, and w,, from word2vec

e Incorporate semantic information

Human ——— §
glass/bottle/, %
mug/cup/can H
Layout Features
b, — . .
= e fg encodes the relative sizes and
b . .
(e S o orientations of b, and b,
Generalization Module

e 14-D feature

Ankan Bansal Scene Understanding
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Introduction

Idea
Functional Generalization Approach

Experiments

Layout Feature

W H W H AW H W H A’

(=58) (h) s (=) s ()
x3—=x0 ) \yg =yt ) T\ =X ) Ny yY
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Introduction

Idea
Functional Generalization Approach

Experiments

Finding Similar Objects

WordNet hierarchy?

Large vocabulary of objects V = {01, 02, ..., 0n}
Concatenate visual features and word vectors
Cluster into k clusters

Objects in the same cluster are functionally similar
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Introduction
Idea

Functional Generalization Approach
Experiments

¢ ‘Pitcher’, ‘Teapot’, ‘Kettle’, ‘Jug’

e ‘Elephant’, ‘Dinosaur’, ‘Horse’, ‘Zebra’, ‘Mule’, ‘Camel’, ‘Bull’
e ‘Can’, ‘Cup’, ‘Glass’, ‘Bottle’

e ‘Cake’, ‘Muffin’, ‘Cheese’, ‘Donut’

e ‘Apple’, ‘Pear’, ‘Peach’, ‘Fig’
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Introduction
Idea

Functional Generalization Approach
Experiments

Functional Generalization

i W
(%]
Human —— s
glass/bottle/ 'g
mug/cup/can 72

F
|Geometric|

Generalization Module

e (human, drink, glass) — (human, drink, cup), (human, drink, can)
e (human, ride, elephant) — (human, ride, horse), (human, ride, camel)

Ankan Bansal Scene Understanding
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Introduction
Idea

Functional Generalization Approach
Experiments

HICO-Det
e 600 HOlI triplet categories for 80 objects
e Training set - 38,000 images with 120,000 HOI annotations
e Test set - 9,600 images with 33,400 HOI instances
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Introduction
Idea

Functional Generalization Approach
Experiments

e Metric: Mean Average Precision (MAP %)
e Three settings: Full, Rare, Non-rare
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Introduction
Idea

Functional Generalization Approach
Experiments

Full Rare Non-rare
Method (600 classes) (138 classes) (462 classes)
Shen et al. 6.46 4.24 712
HO-RCNN + IP 7.30 4.68 8.08
HO-RCNN + IP + S 7.81 5.37 8.54
InteractNet 9.94 7.16 10.77
iHOI 9.97 7.1 10.83
GPNN 13.11 9.34 14.23
ICAN 14.84 10.45 16.15
Gupta et al. 17.18 12.17 18.68
Interactiveness Prior 17.22 13.51 18.32
Peyre et al. 19.40 15.40 20.75
Functional Generalization (Ours) 21.96 16.43 23.62

Table: mAP (%) for the HICO-Det dataset.
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Introduction
Idea
Functional Generalization Approach

Zero-Shot HOI Detection

Experiments

- Seen object setting
At least one interaction seen for each object

- Unseen object setting
No interactions seen for some object classes
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Introduction
Idea

Functional Generalization Approach
Experiments

Unseen Seen All
Method (120 classes) (480 classes) (600 classes)
Shen et al. 5.62 - 6.26
Ours 10.93 12.60 12.26

Table: Performance (mAP %) in the seen object zero-shot setting

Unseen Seen All
Method (100 classes) (500 classes) (600 classes)
Ours 11.22 14.36 13.84

Table: Performance (mAP %) in the unseen object setting
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Functional Generalization Approach

Experiments
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Human ———

glass/bottle/
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=,

Generalization Module

Layout Features

e fy encodes the relative sizes and
orientations of by and b,

e 14-D feature
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Spatial Priming for Detecting
Human-Obiject Interactions

Ankan Bansal, Sai Saketh Rambhatla, Abhinav Shrivastava, Rama Chellappa



Introduction
Approach
Experiments

Spatial Priming for HOI Detection

¢ Relative location of human and object provides useful clues
e Can make guesses based on the layout
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Spatial Priming for HOI Detection
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Spatial Priming for HOI Detection
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Introduction
Approach

X . R Experiments
Spatial Priming for HOI Detection

Layout Module

Object

o o 2 o 2 e

90$D
80LD

L
A

> 7,

Human
1x1 1x1 1x1

e Lateral connections from the visual module for visual context

e Semantic knowledge in the form of word2vec word
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Introduction
Approach
Experiments

Spatial Priming for HOI Detection

Visual Module

1x1 1x1 I N3

€Sy

Cropped
Union Box
AF"L' .ﬁ':' m N

e Uses outputs of the layout module and features from the object detector

Ankan Bansal Scene Understanding
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Introduction
Approach
Experiments

Spatial Priming for HOI Detection

Lateral Connections
e Explicitly share visual context not available in the layout module

Spatial Priming
e Predictions from L prime the visual module
¢ Refined by the visual module
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Spatial Priming for HOI Detection
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Introduction
Approach
Experiments

Spatial Priming for HOI Detection

HICO-Det
e 600 HOlI triplet categories for 80 objects
e Training set - 38,000 images with 120,000 HOI annotations
e Test set - 9,600 images with 33,400 HOI instances
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Experiments

Spatial Priming for HOI Detection

e Metric: Mean Average Precision (MAP %)
e Three settings: Full, Rare, Non-rare
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Approach
Experiments

Spatial Priming for HOI Detection

Full Rare Non-rare
Method (600 classes) (138 classes) (462 classes)
Shen et al. 6.46 4.24 712
HO-RCNN + IP 7.30 4.68 8.08
HO-RCNN + IP + S 7.81 5.37 8.54
InteractNet 9.94 7.16 10.77
iHOI 9.97 711 10.83
GPNN 13.11 9.34 14.23
ICAN 14.84 10.45 16.15
Gupta et al. 17.18 1217 18.68
Interactiveness Prior 17.22 13.51 18.32
Peyre et al. 19.40 15.40 20.75
Functional Generalization (Ours) 21.96 16.43 23.62
Spatial Priming (Ours) 24.79 14.77 27.79

Table: Performance (mAP %) on HICO-Det
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Approach
Experiments

Spatial Priming for HOI Detection

Zero-Shot HOI Detection

Unseen Seen All
Method (120 classes) (480 classes) (600 classes)
Shen et al. 5.62 - 6.26
Func. Gen. (Ours) 10.93 12.60 12.26
Ours 11.06 21.41 19.34

Table: Zero-shot HOI detection (MAP %)
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Approach

. - . Experiments
Spatial Priming for HOI Detection

No Priming

Object I

H

o S R VLHH@
NSRRI :

v
2010
v

7
jzel%0]
7
9050
T
3
80.L0
7
7
g

Full Rare Non-rare
Method (600 classes) (138 classes) (462 classes)
V-L-add (NP) 23.41 12.14 26.78
NC 22.56 12.78 25.48
L-V 22.45 12.23 25.50
V-L-concat 22.76 11.78 26.04

Table: mAP % for the model without priming (NP). NC is same model without lateral connections
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Approach
Experiments

Spatial Priming for HOI Detection

No Lateral Connections

Object
2 |,
i

8010

Human

i
'—>

Full Rare Non-rare

Method Model (600 classes) (138 classes) (462 classes)
NL L 18.35 8.20 2138

\ 23.90 10.82 27.81
NL - f, - f, L 17.44 10.14 19.62

\ 23.19 14.71 25.72
NL - w, L 16.33 8.45 18.69

s 22.91 11.29 26.39

Table: Performance (mAP %) for the model without lateral connections
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Visual Question Answering on Image Sets

- Answer questions about a set of images
Relate objects in one or more images

- Dataset - indoor and outdoor scenes

- VQA baselines

what the largest object in the room?  what is above the toilet wall? what kind of car is in front of the white car?
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Conclusion

e Datasets and deep networks for face recognition

e Additional sources of information for vision problems

e Semantic information from large-scale text data

e Data augmentation strategies using semantic information
e Deep encoding of geometric layout
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Ideas for Future Work

Frame semantics for video understanding

Annotated artwork for HOI detection

Lexical ontology and hierarchical prediction for ZSD

Better BERT-type models for jointly learning visual-semantic spaces



Questions?

Face Recognition Zero-Shot Object Detection
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